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Abstract: In the context of holographic QCD we analyze Sakai-Sugimoto’s chiral model

at finite baryon density and zero temperature. The baryon number density is introduced

through compact D4 wrapping S4 at the tip of D8-D8. Each baryon acts as a chiral point-

like source distributed uniformly over R
3, and leads a non-vanishing U(1)V potential on

the brane. For fixed baryon charge density nB we analyze the energy density and pressure

using the canonical formalism. The baryonic matter with point like sources is always in

the spontaneously broken phase of chiral symmetry, whatever the density. The point-like

nature of the sources and large Nc cause the matter to be repulsive as all baryon interactions

are omega mediated. Through the induced DBI action on D8-D8, we study the effects of

the fixed baryon charge density nB on the pion and vector meson masses and couplings.

Issues related to vector dominance in matter in the context of holographic QCD are also

discussed.
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1. Introduction

Dense hadronic matter is of interest to a number of fundamental problems that range from

nuclear physics to astrophysics. QCD at finite baryon density is notoriously difficult: (1)

the introduction of a chemical potential causes most lattice simulations to be numerically

noisy owing to the sign problem; (2) the baryon-baryon interaction is strong making most

effective approaches limited to subnuclear matter densities.

In the limit of a large number of colors Nc, QCD is an effective theory of solely mesons

where baryons appear as chiral skyrmions. Dense matter in large Nc is a skyrmion crystal

with spontaneous breaking of chiral symmetry at low density, and restored or stripped

(Overhauser) chiral symmetry at high density. While some of these aspects can be studied

qualitatively using large Nc motivated chiral models [1], they still lack a first principle

understanding.

The AdS/CFT approach has provided a framework for discussing large Nc gauge the-

ories at strong coupling λ = g2Nc from first principles [2]. A particularly interesting

AdS/CFT construction is the holographic and chiral approach proposed by Sakai and Sug-

imoto [3, 4] (SS model). In the limit where Nf ≪ Nc, chiral QCD is obtained as a gravity

dual to Nf D8-D8 embedded into a D4 background in 10 dimensions where supersymmetry

is broken by the Kaluza-Klein (KK) mechanism. The KK scale plays the role of the chiral

scale. The SS model yields a first principle effective theory of pions, vectors, axials and

baryons that is in good agreement with experiment [3 – 5]. The SS model at finite temper-

ature has been studied in [6] and the bayrons in the context of Skyrmion and Instanton

have been worked out [5, 7].

Recently we have suggested that the SS model can be used to analyze dense hadronic

matter at large Nc and strong coupling λ [8]. At zero temperature, the quark/baryon

chemical potential µ (or µB = mB + Ncµ) is introduced as the boundary value of the

U(1)V brane potential A0. The diagonalization of the vector modes in dense matter,

enforces vector dominance and yields A0 = µψv throughout where ψv is given in [4]. While

the mode decomposition of ψv on the brane leads to a highly oscillating A0, we have argued

in [8] that only those modes in A0 below the KK scale should be retained. As a result both

brane and meson properties in holographic and dense baryonic matter were discussed.

Soon after the posting of this work, several studies appeared addressing the same issue

of baryonic matter in holographic QCD including also temperature. In [9] it was suggested

that the A0 field is instead fixed by the equation of motion on the brane by varying the

pertinent DBI action. In the absence of brane “charges” the authors in [9] concluded that

only a constant A0 is a solution, with no baryonic effect at zero temperature. However, the

conserved baryonic charge has to be mirrored by the “charge” of baryon vertex. The latter

is obtained by considering brane wrapping of S4 within D8-D8. The wrapping number is

the bulk conserved”charge” which is at the origin of a non-constant A0 in bulk.

This point was further developed in [10] and used to discuss the phase structure of

dense and hot holographic matter, albeit in a brane set up without chiral symmetry. In [11]

it was argued that the additional “charges” in bulk upset the smoothness of the DBI
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surface in bulk, leading to a spiky structure due to the force balancing condition.1 As a

result, the embedded branes should always touch the horizon even for arbitrarily small

temperature and/or density, thereby altering totally the phase diagram in [10]. This latter

point is physically unintuitive. Indeed, the “charge” or baryon vertex exists even at zero

temperature with no need to connect to any horizon. At finite temperature through the

insertion of a black hole this point is developed in details in [12].

In this paper we follow on the analysis in [10] in bulk and at zero temperature (and low

temperature before deconfinement phase transition). The dual “charge” or baryon vertex

is inserted at the tip of the minimally embedded D8-D8 surface. This way each of D8, D8

is shared equally, leading to a chiral baryon vertex. Since no connecting string is involved,

there is no spiky structure involved here. Also, there is a one-to-one correspondence be-

tween the baryon vertex normalization and the Wess-Zumino term in the induced chiral

DBI action. Thus the boundary chiral skyrmions constructed from the induced DBI action,

are dual to static and point-like instantons in bulk. These conditions will be relaxed in a

sequel. In many ways, this approach complements the original discussion in [8].

In section 2, we briefly review the SS model and set up the notations. In section 3, we

introduce the U(1)V field A0 in bulk and show how the baryon charge density nB affects

its minimal profile. In section 3 and 4, we construct the bulk hamiltonian and derive

the energy density as a function of the identified baryon density. The energy density is

found to grow about quadratically with the baryon density. In section 5, we summarize

the construction of the chiral effective action for pions, vectors and axials at zero density.

In section 6, we show how this chiral effective action is modified by the finite “charges” in

bulk. A number of meson properties are discussed as a function of the identified baryon

number. Our conclusions are in section 7. Throughout, the canonical formalism will be

used.

2. SS model

In this section we summarize the D4/D8-D8 set up for notation and completeness. For a

thorough presentation we refer to [3] and references therein. The metric, dilaton φ, and

the 3-form RR field C3 in Nc D4-branes background are given by

ds2 =

(
U

R

)3/2 (
ηµνdxµdxν + f(U)dτ2

)
+

(
R

U

)3/2 (
dU2

f(U)
+ U2dΩ2

4

)
, (2.1)

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4
ǫ4 , f(U) ≡ 1 − U3

KK

U3
, (2.2)

where xµ = x0,1,2,3, τ(≡ x4) is the compact variable on S1. U(≥ UKK) and Ω4 are the

radial coordinate and four angle variables in the x5,6,7,8,9 direction. R3 ≡ πgsNcl
3
s , where

gs and ls are the string coupling and length respectively. V4 = 8π2/3 is the volume of unit

S4 and ǫ4 is the corresponding volume form.

1Notice that while the baryonic charges are space separated, they occupy the same position in the dual

transverse space!
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To avoid a conical singularity at U = UKK the period of δτ of the compactified τ

direction is set to

δτ =
4π

3

R3/2

U
1/2
KK

. (2.3)

in terms of which we define the Kaluza-Klein mass as

MKK ≡ 2π

δτ
=

3

2

U
1/2
KK

R3/2
. (2.4)

The parameters R, UKK, and gs may be expressed in terms of MKK, λ(= gYMNc), and ls
as

R3 =
1

2

λl2s
MKK

, UKK =
2

9
λMKKl2s , gs =

1

2π

λ

MKKNcls
(2.5)

Now, consider Nf probe D8-branes in the Nc D4-branes background. With U(Nf ) gauge

field AM on the D8-branes, the effective action consists of the DBI action and the Chern-

Simons action:

SD8 = SDBI
D8 + SCS

D8 ,

SDBI
D8 = −T8

∫
d9x e−φ tr

√
−det(gMN + 2πα′FMN ) , (2.6)

SCS
D8 =

1

48π3

∫

D8
C3tr F 3 . (2.7)

where T8 = 1/((2π)8l9s), the tension of the D8-brane, FMN = ∂MAN −∂NAM − i [AM , AN ]

(M,N = 0, 1, . . . , 8), and gMN is the induced metric on D8-branes:

ds2 =

(
U

R

)3/2

ηµνdxµdxν +

[(
U

R

)3/2

f(U)(τ ′(U))2 +

(
R

U

)3/2 1

f(U)

]
dU2 +

(
R

U

)3/2

U2dΩ2
4 ,

(2.8)

where τ ′ = dτ
dU . The effective action of D8 has the same form and the total action of Nf

D8-D8-branes has a symmetry

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A , (2.9)

which is interpreted as a flavor chiral symmetry of massless quarks.

In the SS model baryons are skyrmions in R
3. However, in the gravity dual they are

either an effective fermion degree of freedom in 5-dimensions (bottom-up) or an instan-

ton wrapping D4 (top-down) and sourcing the baryon current through the Chern-Simons

term [5, 8, 13, 14]. In both cases, the baryon can be treated as a delta function source of

the brane gauge field A0 (which is ω0 in R
3), which we will use explicitly.

3. Background field A0

Let A0(U) be a U(1)V valued background gauge field in bulk. Its boundary value is related

to the baryon chemical potential [8 – 10, 12]. In the absence of the source, the effective
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action of the D8-branes (2.6) becomes

SD8 = −NfT8V4

gs

∫
d4x dUU4

[
f (τ ′)2 +

(
R

U

)3 (
f−1 −

(
2πα′A′

0

)2
)] 1

2

, (3.1)

where A′
0 = dA0

dU and the Chern-Simons action vanishes. The equations of motion for τ(U)

and A0(U) are [9]

d

dU




U4f τ ′
√

f (τ ′)2 +
(

R
U

)3
(
f−1 − (2πα′A′

0)
2
)


 = 0, (3.2)

d

dU




U4
(

R
U

)3 A′
0√

f (τ ′)2 +
(

R
U

)3
(
f−1 − (2πα′A′

0)
2
)


 = 0. (3.3)

In this paper we consider only the case τ ′ = 0, Sakai-Sugimoto’s original embedding [3, 4],

where the D8-branes configuration in the τ coordinate is not affected by the existence of

background A0. This corresponds to τ = δτ
4 , the maximal asymptotic separation between

D8 and D8 branes.

To compare with [3, 4] we change the variable U to z through

U ≡ (U3
KK + UKKz2)1/3 (3.4)

The action (3.1) is then

SD8 = −Nf T̃

∫
d4x

∫ ∞

0
dz U2

√
1 − (2πα′)2

9

4

Uz

UKK
(∂zA0)2 , (3.5)

where we used τ ′ = 0 and T̃ ≡ NcMKK

216π5α′3 . It is useful to define the dimensionless quantities

Z ≡ z

UKK
, K(U) ≡ 1 + Z2 =

(
U

UKK

)3

, (3.6)

in terms of which the action is written as2

SD8 = −a

∫
d4x

∫
dZ K2/3

√
1 − bK1/3(∂ZA0)2 , (3.7)

where

a ≡ NcNfλ3M4
KK

39π5
, b ≡ 36π2

4λ2M2
KK

. (3.8)

Now we introduce the baryon source coupled to A0 through the Chern-Simons term [8,

5, 13] as mentioned before. We assume that baryons are uniformly distributed over R
3 space

2The integral is extended to (−∞,∞) to take into account D8 branes as well as D8 branes.
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Figure 1: (a) The profile of A0(Z), (b) Chemical potential vs baryon charge ( µ
mρ

vs Q
n0

, where

Q ≡ nq/2).

whose volume is V . For large λ, the instanton size is 1/
√

λ [5, 14]. It can be treated as a

static delta function source at large Nc. For a uniform baryon distribution, the source is

Ssource = NcnB

∫
d4x

∫
dZ δ(Z)A0(Z). (3.9)

The equation of motion of A0 is

d

dZ

∂L
∂(∂ZA0)

= nqδ(Z) , (3.10)

which yields

∂L
∂(∂ZA0)

=
1

2
nq sgn(Z) , (3.11)

where nq = NcnB is the quark density and the step function sig(Z) is determined by the

symmetry between D8 (Z > 0) and D8(Z < 0). By integrating once more we get the

classical solution A0

A0(Z;nq) = A0(0) +

∫ Z

0
dZ

nq/2√
(ab)2K2 + bK1/3n2

q/4
. (3.12)

We introduce the “baryon charge chemical potential of a quark”, µ, by [10, 12]

µ(nq) ≡ lim
|Z|→∞

A0(Z;nq) . (3.13)

This relation also defines µ as a function of nq and vice versa. Furthermore we define the

baryon chemical potential as

µB = mB + Ncµ . (3.14)
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In figure (1a) we plot the profile of A0(Z) in the Z coordinate and in figure (1b) we show

µ for various baryon densities. Since we work in the canonical formalism µ is more like a

Lagrange constraint.

Throughout, the numerics will be carried using the following values [3, 4]: Nf = 2,

Nc = 3, fπ = 92.6MeV, and mρ = 776MeV. The smallest eigenvalue was calculated to be

λ1 = 0.669. Using these five values we can estimate MKK, λ, κ, a, and b:

MKK =
mρ√
λ1

≃ 950MeV, λ ≡ g2
YMNc = f2

π

54π4

NcM2
KK

≃ 16.71, κ ≡ λNc

216π3
≃ 0.0075,

(3.15)

and

a = 3.76 · 109 MeV 4, b = 7.16 × 10−6MeV −2. (3.16)

The definition of κ and λ are different from [3, 4] by a factor of 2, but it is consistent

with [5]. In all figures nB is normalized to nB

n0
, with n0 the nuclear matter density,

n0 = 0.17 fm−3 ≃ 1.3 × 106 MeV 3. (3.17)

4. Thermodynamics

Consider the action (3.7) with the source term (3.10),

S =

∫
d4x

∫ +∞

−∞
dZ L

with L ≡ −aK2/3
√

1 − bK1/3(∂ZA0)2 + nqδ(Z)A0(Z) . (4.1)

The A0 is an auxillary field with no time-dependence. It can be eliminated by the equation

of motion (3.11) and (3.12). The energy is

U(nq) =

∫
dx3

∫ +∞

−∞
dZ (−L)

= aV

∫ +∞

−∞
dZ K2/3

√

1 +
n2

q

4a2b
K−5/3 − nqµ , (4.2)

where V is short for
∫

dx3 and we may set µ = 0. The chemical potential µ is constrained

by the Gibbs relation µ =
∂F (nq)

∂nq
where F (nq) is the Helmholtz free energy which is U(nq)

at zero temperature. Thus

µ =

∫ ∞

−∞
dZ

nq/4√
(ab)2K2 + bK1/3n2

q/4
, (4.3)

which is in agreement with the solution (3.12) for A0(0) = 0. We note that this construction

is consistent with [8, 9, 11, 10] where the grand potential is identified with the DBI action

at finite µ.
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Figure 2: Numerical behaviour of the thermodynamic functions: See eq. (4.5)

In terms of the baryon number density nB (nq/Nc) the regularized Helmholtz free

energy is

Freg(nB)

aV
≡

∫ ∞

−∞
dZK2/3

[√
1 +

(NcnB)2

4a2b
K−5/3 − 1

]
, (4.4)

after subtracting the vacuum value. The regularized internal energy U , pressure p and

grand potential Ω as a function of baryon number density nB or the baryon chemical

potential µB are

Ureg(nB)

aV
=

∫ ∞

−∞
dZK2/3

[√
1 +

(NcnB)2

4a2b
K−5/3 − 1

]
,

p(nB)reg
a

=

∫ ∞

−∞
dZ K2/3


1 − 1√

1 + (NcnB)2

4a2b
K−5/3


 ,

Ωreg(µ̃B)

aV
=

∫ ∞

−∞
dZ K2/3


 1√

1 + (NcnB( fµB))2

a2b
K−5/3

− 1


 ,

µ̃B = Nc

∫ ∞

−∞
dZ

NcnB/4√
(ab)2K2 + bK1/3(NcnB/2)2

, (4.5)

where µ̃B ≡ µB − mB = Ncµ.

In figure (2) we present the numerical plots of these thermodynamic functions with the

numerical inputs in section 3. For small baryon densities the energy density is quadratic

– 8 –
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Thermodynamic function nB/n0 ∼ 0 nB/n0 ∼ 10 nB/n0 → ∞

Internal energy (nB/n0)
2 (nB/n0)

1.85 (nB/n0)
1.4

Pressure (nB/n0)
2 (nB/n0)

1.45 (nB/n0)
1.4

Chemical potential (nB/n0)
1 (nB/n0)

0.67 (nB/n0)
0.4

Grand potential −(µ̃B/mρ)
2 −(µ̃B/mρ)

2.16 −(µ̃B/mρ)
3.5

Table 1: Numerical behaviour of the thermodynamic functions: See eq. (4.5)

in nB/n0 (or µ/mρ). At large baryon densities it is of order (nB/n0)
1.4. The small density

limit can be qualitatively understood by noting that in bulk the A0 configuration for fixed

charge is obtained by minimizing the induced DBI action of D8-D8. Thus only flavor-

meson mediated interactions between the point-like baryons are included. At large Nc the

D4 mediated correlated gravitons (glueballs on the boundary) are heavy and decouple.

Since our point baryonic vertices in bulk map on infinite size skyrmions at the boundary

this implies that only ω exchanges survive at large Nc. Rho and pion exchange relies

on skyrmion gradients which are zero. At low baryon densities, the dominant Skyrmion-

omega-Skyrmion interaction is two-body and repulsive. Thus the energy density is positive

and quadratic in the baryon density. The baryonic matter is prevented from flying apart by

the container V . At large baryon densities, the energy density softens as the quark chemical

potential is seen to saturate to (nB/n0)
0.4 numerically. We recall that the baryons are fixed

sources so no Fermi motion is involved to this order. The pressure behaves as (nB/n0)
2 at

low baryon densities, and again softens to (nB/n0)
7/5 at large baryon densities from the

plot. We summarize the behaviour of the thermodynamic functions obtained numerically

in table. (1). In this paper we do not consider the back reaction of gravity for baryons or

D8 brane, therefore the behaviour at higher densities, say nB/n0 ≫ 10, is not justified.

5. Effective meson action: nB = 0

In [3, 4] the meson spectrum and coupling was studied at zero baryon density by analyzing

the DBI action of D8-D8 branes with the fluctuating gauge field AM . We want to extend

the analysis to finite baryon density or nB 6= 0. For this purpose we streamline in this

section the construction in [3, 4] for notational purposes and completeness. In the next

two sections we add the background U(1)V field A0 to the fluctuating gauge field AM . It

will enable us to study meson properties at finite baryon density.

5.1 Mode decomposition of AM

The gauge field AM has nine components, Aµ = A1,2,3,4, Az(≡ A5), and Aα(α = 5, 6, 7, 8,

the coordinates on the S4). We assume that Aα = 0, and Aµ and Az are independent of

the coordinate on S4. We further assume that AM can be expanded in terms of complete

– 9 –
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sets, ψn(z) and φn(z) as

Aµ(xµ, z) =
∞∑

n=1

B(n)
µ (xµ)ψn(z) , (5.1)

Az(x
µ, z) = ϕ(0)(xµ)φ0(z) +

∞∑

n=1

ϕ(n)(xµ)φn(z) , (5.2)

where B
(n)
µ is identified with vector and axial vector mesons and ϕ(0) with pions. ϕ(n)

can be absorbed into B
(n)
µ through the gauge transformation (section 5.2). ψn satisfies the

eigenvalue equation,

−K1/3 ∂Z (K ∂Zψn) = λnψn , (5.3)

with the boundary condition ∂Zψn(0) = 0 (vector meson) or ψn(0) = 0 (axial vector meson)

at Z = 0. They are normalized by

κ

∫
dZ K−1/3ψnψm = δnm , (5.4)

where κ ≡ T̃ (2πα′)2R3 = λNc

216π3 , and (5.3) and (5.4) implies

κ

∫
dZ K(∂Zψn)(∂Zψm) = λnδnm . (5.5)

The φn(Z) are chosen such that

φn(Z) =
1√

λnMKKUKK
∂Zψn(Z) (n ≥ 1) , (5.6)

φ0(Z) =
1√

πκMkkUKK

1

K
, (5.7)

with the normalization condition:

(φm, φn) ≡ κM2
KKU2

KK

∫
dZ K φmφn = δmn , (5.8)

which is compatible with (5.5).

5.2 Effective meson action

With the gauge field Aµ(xµ, z) and Az(x
µ, z) the DBI action of the D8-D8-branes becomes

5-dimensional 3:

SDBI
D8-D8

= −T̃

∫
d4xdz U2 (5.9)

tr

√
1 + (2πα′)2

R3

2U3
FµνFµν + (2πα′)2

9

4

U

UKK
FµzFµz + [F 3] + [F 4] + [F 5] ,

where T̃ = Nc

216π5
MKK
α′3 , U is a function of z by (3.4), and the indices are contracted by

the metric (−,+,+,+,+). [F 3], [F 4], and [F 5] are short for the terms of F 3, F 4, and F 5

3The gauge group generators ta are normalized as tr tatb = δab/2
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respectively. Notice that the range of z is extended from [0,∞] to [−∞,∞] to account for

both D8 and D8.

Inserting (5.1) and (5.2) into (5.9) and using the orthonomality of ψn and φn

((5.4)∼(5.8)), we have [3, 4]

SDBI
D8-D8

∼
∫

d4x tr

[
(∂µϕ(0))2 +

∞∑

n=1

(
1

2
(∂µB(n)

ν − ∂νB(n)
µ )2

+λnM2
KK(B(n)

µ − λ−1/2
n ∂µϕ(n))2

)]

+(interaction terms) . (5.10)

Here ϕ(0) and B
(n)
µ are interpreted as a masseless pion field and an infinite tower of vector

(or axial) vector meson fields with masses m2
n(≡ λnM2

KK). The lightest vector meson ρ

is identified with B
(1)
µ . ϕ(n) are absorbed into B

(n)
µ . In the expansion (5.1) and (5.2), we

have implicitly assumed that the gauge fields are zero asymptotically, i.e. AM (xµ, z) → 0 as

z → ±∞. The residual gauge transformation that does not break this condition is obtained

by a gauge function g(xµ, z) that asymptotes a constant g(xµ, z) → g± at z ±∞. (g+, g−)

are interpreted as elements of the chiral symmetry group U(Nf )L × U(Nf )R in QCD with

Nf massless flavors.

5.3 Az = 0 gauge and pion effective action

In the previous subsection we worked in the gauge AM (xµ, z) → 0 as z → ±∞. However

the Az = 0 gauge can be achieved by applying the gauge transformation AM → gAMg−1 +

g∂Mg−1 with the gauge function

g−1(xµ, z) = P exp

{
−

∫ z

0
dz′ Az(x

µ, z′)

}
. (5.11)

Then the asymptotic values of Aµ(z → ∞) do not vanish and change to

Aµ(xµ, z) → ξ±(xµ)∂µξ−1
± (xµ) as z → ±∞ , (5.12)

where ξ±(xµ) ≡ limz→±∞ g(xµ, z). The gauge fields can be expanded as

Aµ(xµ, z) = ξ+(xµ)∂µξ−1
+ (xµ)(xµ)ψ+(z) + ξ−(xµ)∂µξ−1

− (xµ)ψ−(z) +
∞∑

n=1

B(n)
µ (xµ)ψn(z) ,

Az(x
µ, z) = 0 , (5.13)

where ψ± is the non-normalizable zero mode of (5.3) with the appropriate boundary con-

dition to yield (5.12):

ψ± =
1

2
± ψ̂0 ,

ψ̂0 =
1

π
arctan(Z) (5.14)
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There is a residual gauge symmetry which maintains Az = 0. It is given by the

z-independent gauge transformation h(xµ),

AM (xµ, z) → h(xµ)AM (xµ, z)h−1(xµ) + h(xµ)∂Mh−1(xµ) , (5.15)

which acts on the component fields as

ξ± → h ξ± g−1
± , (5.16)

B(n)
µ → hB(n)

µ h−1 , (5.17)

where we considered chiral symmetry g± together. Then ξ±(xµ) are interpreted as the

U(Nf ) valued fields ξL,R(xµ) which carry the pion degrees of freedom in the hidden local

symmetry approach . Indeed the transformation property (5.16) is the same as that for

ξL,R(xµ) if we interpret h(xµ) ∈ U(Nf ) as the hidden local symmetry. They are related to

the U(Nf ) valued pion field U(xµ) in the chiral Lagrangian by

ξ−1
+ (xµ)ξ−(xµ) = U(xµ) ≡ e2iΠ(xµ)/fπ . (5.18)

The pion field Π(xµ) is identical to ϕ(0)(xµ) in (5.2) in leading order. A convenient gauge

choice is

ξ−(xµ) = 1, ξ−1
+ (xµ) = U(xµ) = e2iΠ(xµ)/fπ (5.19)

which expresses the gauge fields as,

Aµ(xµ, z) = U−1(xµ)∂µ U(xµ)ψ+(z) +
∑

n≥1

B(n)
µ (xµ)ψn(z) (5.20)

In this gauge, after omitting the vector meson fields B
(n)
µ , the effective action reduces to

the Skyrme model

SDBI
D8-D8

∣∣∣
B

(n)
µ =0

=

∫
d4x

(
κM2

KK

π
tr

(
U−1∂µU

)2
+

1

32e2
S

tr
[
U−1∂µU,U−1∂νU

]2
)

, (5.21)

where e−2
S ≡ κ

∫
dz K−1/3(1−ψ2

0)
2 and the pion decay constant fπ is fixed by the comparison

with the Skyrme model:

f2
π ≡ 4

π
κM2

KK =
1

54π4
M2

KKλNc , (5.22)

Another gauge we will consider below is

ξ−1
+ (xµ) = ξ−(xµ) = eiΠ(xµ)/fπ . (5.23)

in terms of which the gauge fields are written as

Aµ(xµ, z) = αµ(xµ)ψ̂0(z) + βµ(xµ) +
∞∑

n=1

B(n)
µ (xµ)ψn(z) , (5.24)

αµ(xµ) = {ξ−1, ∂µξ} =
2i

fπ
∂µΠ + [[∂µΠ3]] + O(Π4) ,

βµ(xµ) =
1

2
[ξ−1, ∂µξ] =

1

2f2
π

[Π, ∂µΠ] + O(Π4) ,

where [[∂µΠ3]] ≡ − i
3f3

π
((∂µΠ)Π2 + Π2∂µΠ − 2Π(∂µΠ)Π).
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6. Effective meson action: nB 6= 0

We now extend the previous analysis to finite baryon density for nB = 0. This is achieved

by adding the background U(1)V field A0 to the fluctuating gauge field AM . Since, the

vacuum modes {ψn, φn} are not mass eigenmodes in matter, we may choose more pertinent

eigenmodes in matter. Two basis set are possible: (1) medium mass eigenmodes ψn ∼
e−imtfn(z); (2) screening eigenmodes ψ ∼ ei~k·~xfn(z). With this in mind, we have the

following gauge fields decomposition

A0(x
µ, z) = A0(z) +

∞∑

n=1

B
(n)
0 (xµ)ωn(z) , (6.1)

Ai(x
µ, z) =

∞∑

n=1

B
(n)
i (xµ)ψn(z) , (6.2)

Az(x
µ, z) =

∞∑

n=0

ϕ(n)(xµ)φn(z) . (6.3)

A0(z) is the background gauge field. The time component modes (ωn(z)) and the space

component (ψn(z)) are not necessarily the same as Lorentz symmetry does not hold in the

matter rest frame. Note that Fµz is modified by A0 while Fµν is not.

In order to compute the DBI action (5.9),

SDBI
D8-D8

= −T̃

∫
d4xdz U2

tr

√
1 + (2πα′)2

R3

2U3
FµνFµν + (2πα′)2

9

4

U

UKK
FµzFµz + [F 3] + [F 4] + [F 5] ,

we need to know FµνFµν , FµzF
µz , [F 3], [F 4], and [F 5], which are involved in general. To

quadratic order (ignoring O((Bµ, ϕ)3)), the contributions are greatly simplified because of:

1) cyclic property of the trace, 2) antisymmetry of Fµ,ν , 3) parity of mode functions. Then

there is no contribution from [F 3] and [F 5]. [F 4] has important terms that will modify

FµνFµν :

[F 4] = (2πα′)4
9

8

U

UKK

(
R

U

)3

F0zF
0zFijF

ij + O((Bµ, ϕ)4) . (6.4)

Table (2) lists all the relevant terms, where we have introduced fij defined as

fij ≡ ∂ivj − ∂jvi , (6.5)

with i, j = 1, 2, 3. Table (2) should be understood in the integral and trace operation. We

omitted some terms vanishing in those operations and rearranged some terms by using the

cyclicity of the trace.

In terms of the definitions on the r.h.s. of the table (2) , the action reads

SDBI
D8-D8

= −T̃

∫
d4xdz U2 tr

√
P0 + P1 , (6.6)
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FµνFµν →
[

2∂0B
(n)
i ∂0B(m)iψnψm + 2∂iB

(n)
0 ∂jB(m)0ωnωm

−2∂0B
(n)
i ∂iB(m)0ψnψm

+(∂iB
(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)ψnψm

]
≡ α2

FµzF
µz → −(Ȧ0)

2 ≡ β0

+2Ȧ0

[
∂0ϕ(n)φn − B0(n)ω̇n + [B(n)0, ϕ(m)]ωnφm

]
≡ β1

+
[
∂0ϕ

(n)∂0ϕ(m)φnφm + B
(n)
0 B(m)0ω̇nω̇m − 2∂0ϕ

(n)B(m)0φnω̇m

+∂iϕ
(n)∂iϕ(m)φnφm + B

(n)
i B(m)iψ̇nψ̇m − 2∂iϕ

(n)B(m)iφnψ̇m

]
≡ β2

[F 4] → fijf
ij(Ȧ0)

2ψ2
1 ≡ γ2

Table 2: The relevant terms in evaluating the DBI action up to quadratic order in the fields (Bµ, ϕ).

The upper dot stands for the derivative with respect to z. The terms should be understood in the

integral and trace operation.

with

P0 ≡ 1 − (2πα′)2
9

4

U

UKK
β0 = 1 − bK

1
3 (∂ZA0)

2 , (6.7)

P1 ≡ (2πα′)2
R3

2U3
(α2) + (2πα′)2

9

4

U

UKK
(β1 + β2) + (2πα′)4

9

8

R3

UKKU2
(γ2) , (6.8)

where P0 does not contain meson fields but involves the baryon density. Expanding the

action for small fields we have

SDBI
D8-D8

= −T̃

∫
d4xdz U2 tr

[
√

P0 +
1

2

P1√
P0

− 1

8

P 2
1√

P0
3

]
+ O((Bµ, ϕ)3)

= S1 + S2 + O((Bµ, ϕ)3) , (6.9)

with

S1 ≡ −T̃

∫
d4xdz U2tr ∆−1 , (6.10)

S2 ≡ −T̃

∫
d4xdz U2tr

[
1

2
∆P1 −

1

8
∆3P 2

1

]
, (6.11)

where the modification factor ∆(nB) is

∆(nB) ≡ 1√
P0

=
1√

1 − bK
1
3 (∂ZA0)2

=

√
1 +

n2
B

4a2b
K−5/3 .
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−S0 is the grand potential discussed in section 4, and S2 will be reduced to 4

S2 = −tr

∫
d4x

{ [∫
dZK−1/3∆ ΨnΨm

]
∂0B

(m)
i ∂0B(n)i (6.12)

+

[∫
dZK−1/3∆ Ωn Ωm

]
∂iB

(n)
0 ∂iB(m)0 −

[∫
dZK−1/3∆ Ψn Ωm

]
2∂0B

(n)
i ∂iB(m)0

+

[∫
dZK−1/3∆−1ΨnΨm

]
1

2
(∂iB

(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆ ∂ZΨn∂ZΨm

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆3ΦnΦm

]
∂0ϕ

(n)∂0ϕ(m) +

[
M2

KK

∫
dZK∆ΦnΦm

]
∂iϕ

(n)∂iϕ(m)

−
[
M2

KK

∫
dZK∆3Φn∂ZΩm

]
2∂0ϕ

(n)B(m)0

−
[
M2

KK

∫
dZK∆Φn∂ZΨm

]
2∂iϕ

(n)B(m)i

}
,

where we defined the scaled eigenfounctions as

Ωn ≡
√

κωn , Φn ≡
√

κψn , Φn ≡
√

κUKKφn . (6.13)

At zero density ∆ = 1, so Φn = Ωn and the action reduces to the (5.10) by the same

mode function in (5.3) ∼ (5.8). However at finite density the eigen modes Ωn, Ψn, and

Φn cannot be determined uniquely. In other words there is no mode decomposition which

makes the action completly diagonal. So we consider the space-like and time-like separatly:

(1) AM = AM (xi, z) and (2) AM = AM (x0, z).

6.1 Space-like fields AM = AM (xi, z)

First we consider time-independent gauge fields. Up to quadratic order the action is

S2 = −tr

∫
d4x

{[∫
dZK−1/3∆ Ωn Ωm

]
∂iB

(n)
0 ∂iB(m)0 (6.14)

+

[∫
dZK−1/3∆−1ΨS

nΨS
m

]
1

2
(∂iB

(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆ ∂ZΨS

n∂ZΨS
m

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆ΦS

nΦS
m

]
∂iϕ

(n)∂iϕ(m)−
[
M2

KK

∫
dZK∆ΦS

n∂ZΨS
m

]
2∂iϕ

(n)Bi(m)

}
,

4Note that the pattern: ∆, ∆−1, and ∆3. This pattern appears also when we consider higher order

terms including couplings. The origin is explained in appendix A.
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where we have defined the scaled eigenfunctions as

Ωn ≡
√

κωn , ΨS
n ≡

√
κψn , ΦS

n ≡
√

κUKKφn . (6.15)

To diagonalize the action we choose ΨS
n as the eigenfunction satisfying

−K1/3∆−1∂Z

(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.16)

−K1/3∆ ∂Z

(
K∆ ∂ZΨS

n

)
= λS

nΨS
n , (6.17)

with the normalization conditions,

∫
dZK−1/3∆ Ωn Ωm = δnm , (6.18)

∫
dZK−1/3∆−1ΨS

nΨS
m = δnm , (6.19)

which imply

∫
dZK∆3 ∂ZΩn ∂ZΩm = λΩ

n δnm , (6.20)
∫

dZK∆ ∂ZΨS
n∂ZΨS

m = λS
nδnm . (6.21)

If we choose ΦS
n as

ΦS
n =

1

MKK

√
λS

n

∂ZΨS
n (n ≥ 1) , ΦS

0 =
1

MKK

1√∫
dZ(K−1∆−1)

1

K∆
, (6.22)

then ∂iϕ
(n) (n ≥ 1) can be absorbed into B

(n)
i through the gauge transformation

B
(n)
i → B

(n)
i +

1

MKK

√
λS

n

∂iϕ
(n) . (6.23)

These choices of mode functions reduces the action to

S2 = −tr

∫
d4x

{
∂iϕ

(0)∂iϕ(0) (6.24)

+∂iB
(n)
0 ∂iB(n)0 +

1

2
f

(n)
ij f (n)ij + Mq2

n B
(n)
0 B(n)0 + M⊥ 2

n B
(n)
i B(n)i

}
,

where we have defined longitudinal screening masses Mq

n and transverse screening masses

M⊥
n as

Mq

n ≡
√

λΩ
nMKK , M⊥

n ≡
√

λS
nMKK . (6.25)
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6.2 Time-like fields AM = AM (x0, z)

For spacially homogeneous gauge fields the action reads

S2 = −tr

∫
d4x

{ [∫
dZK−1/3∆ ΨT

nΨT
m

]
∂0B

(m)
i ∂0B(n)i

+

[
M2

KK

∫
dZK∆ ∂ZΨT

n∂ZΨT
m

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆3ΦΩ

nΦΩ
m

]
∂0ϕ

(n)∂0ϕ(m)

−
[
M2

KK

∫
dZK∆3ΦΩ

n∂ZΩm

]
2∂0ϕ

(n)B0(m)

}
,

(6.26)

where we have defined the scaled eigenfunctions

Ωn ≡
√

κωn , ΨT
n ≡

√
κψn , ΦΩ

n ≡
√

κUKKφn . (6.27)

We choose ΨS
n as the eigenfunction satisfying

−K1/3∆−1∂Z

(
K∆ ∂ZΨT

n

)
= λT

nΨT
n , (6.28)

−K1/3∆−1∂Z

(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.29)

with the normalization conditions,
∫

dZK−1/3∆ ΨT
nΨT

m = δnm , (6.30)
∫

dZK−1/3∆ Ωn Ωm = δnm , (6.31)

which imply
∫

dZK∆ ∂ZΨT
n∂ZΨT

m = λT
ndnm , (6.32)

∫
dZK∆3 ∂ZΩn ∂ZΩm = λΩ

n δnm , (6.33)

If we choose ΦS
n as

ΦΩ
n =

1

MKK

√
λΩ

n

∂ZΨΩ
n , ΦΩ

0 =
1

MKK

1√∫
dZ(K−1∆−3)

1

K∆3
, (6.34)

then ∂0ϕ
(n) (n ≥ 1) can be absorbed into B

(n)
0 through the gauge transformation

B
(n)
0 → B

(n)
0 +

1

MKK

√
λΩ

n

∂0ϕ
(n) . (6.35)

– 17 –



J
H
E
P
0
1
(
2
0
0
8
)
0
0
2

The action is reduced to

S2 = −tr

∫
d4x

{
∂0ϕ

(n)∂0ϕ(n) + ∂0B
(n)
i ∂0B(n)i + m2

nB
(n)
i B(n)i + M2

KKλΩ
nB

(n)
0 B(n)0

}
,

(6.36)

where we have defined the mass

mn =
√

λT
nMKK . (6.37)

6.3 Pion effective action

In this subsection we work in the Az = 0 gauge following the procedure in section 5.3.

6.3.1 Time-like field AM = AM (x0, z)

First consider the case AM = AM (x0, z). By the gauge transformation AM → gAMg−1 +

g∂Mg−1 with the gauge function

g−1(x0, z) = P exp

{
−

∫ z

0
dz′ Az(x

0, z′)

}
, (6.38)

the gauge fields are rewritten as

A0(x
0, z) = A0(z) + ξ+(x0)∂0ξ

−1
+ (x0)ω+(z) + ξ−(x0)∂0ξ

−1
− (x0)ω−(z) , (6.39)

Ai(x
0, z) = Az(x

0, z) = 0 , (6.40)

where we have omitted the vector mesons B
(n)
µ . The ω± are obtained as zero mode solutions

of (6.29) satisfying the boundary condition for A0(x
0, z):

ω±(z) ≡ 1

2
± 1∫

dZ(K−1∆−3)

∫ Z

0
dZ

1

K∆3
. (6.41)

By using the residual gauge symmetry h(xµ) (5.19) and (5.20) we may express the gauge

field as

A0(x
0, z) = A0 + U−1(x0)∂0 U(x0)ω+(z) . (6.42)

The field strength is

Fzµ = Ȧ0 + U−1∂0Uφ̂ω
0 (z) , Fµν = 0 , (6.43)

where

φ̂ω
0 (z) ≡ ∂zω+(z) =

1

UKK

∫
dZ(K−1∆−3)

1

K∆3
. (6.44)

The action becomes

S2 = tr

∫
d4x

[
κM2

KK

1∫
dZK−1∆−3

]
(U−1∂0U)2 , (6.45)

and we identify the time-like pion decay constant fT
π as

fT
π

2
=

4κM2
KK∫

dZK−1∆−3
, (6.46)

by comparison with the Skyrme model.
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6.3.2 Space-like field AM = AM (xi, z)

Similarly, we consider the case AM = AM (xi, z). Using the same gauge transformation we

can work with the gauge fields,

Ai(x
i, z) = ξ+(xi)∂iξ

−1
+ (xi)ψS

+(z) + ξ−(xi)∂iξ
−1
− (xi)ψS

−(z) ,

A0(x
i, z) = A0(z) ,

Az(x
i, z) = 0 ,

where ψS
± are obtained as a zero mode solution of (6.19) satisfying the pertinent boundary

condition of Ai(x
i, z):

ψS
±(z) ≡ 1

2
± 1∫

dZ(K−1∆−1)

∫ Z

0
dZ

1

K∆
(6.47)

Then the gauge field and the field strength in the gauge (5.19) are

A0(x
0, z) = A0 + U−1(xi)∂i U(xi)ψS

+(z)

Fzµ = Ȧ0 + U−1∂iUφ̂S
0 (z) , (6.48)

where we do not consider Fµν since we are interested in the kinetic part and

φ̂S
0 (z) ≡ ∂zψ

S
+(z) =

1

UKK

∫
dZ(K−1∆−1)

1

K∆
. (6.49)

The action is

S2 = tr

∫
d4x

[
κM2

KK

1∫
dZK−1∆−1

]
(U−1∂iU)2 , (6.50)

and fS
π is identified by

fS
π

2
=

4κM2
KK∫

dZK−1∆−1
. (6.51)

6.4 Vector mesons interactions

In this section we study the interactions of the fields B
(1)
0 , B

(1)
i and ϕ(0) corresponding to

the lowest medium modes Ω1, Ψ1, and Φ1. For simplicity, we use the following notation,

v0 ≡ B
(1)
0 , vi ≡ B

(1)
i , Π ≡ ϕ(0) . (6.52)

The details of the computation are relegated to appendix A 5.

5Both in appendix A and this section, the vector meson field is considered as anti Hermitian. Although

in appendix A, we are working with the vacuum modes instead of the medium modes, the conversion can

be done by inspection using the formula tabulated in table (4), (5)
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6.4.1 Time-like fields AM = AM (x0, z)

S2 = tr

∫
d4x

{
− ∂0Π∂0Π + ∂0vi∂

0vi + m2
1viv

i + M2
KKλΩ

1 v0v
0

−2gT
vΠ2 v0[Π, ∂0Π] + gT

v3 2∂0vi[v
0, vi] + · · ·

}
, (6.53)

where the couplings can be read from (4), (5) in appendix A by substituting the vacuum

mode functions by the medium mode functions

gT
vΠ2 =

1√
κ

∫
dZ Ω1

K∆3∫
dZ 1

K∆3

,

gT
v3 =

1√
κ

∫
dZ K−1/3Ω1(Ψ

T
1 )2∆ . (6.54)

6.4.2 Space-like fields AM = AM (xi, z)

S2 = tr

∫
d4x

{
− ∂iΠ∂iΠ + ∂iv0∂

iv0 +
1

2
fijf

ij + Mq2
1 v0v

0 + M⊥ 2
1 viv

i

−2gS
vΠ2 vi[Π, ∂iΠ] + gS

v3 2∂iv0[v
i, v0] + g̃S

v3 fij[v
i, vj ] + · · ·

}
, (6.55)

where the couplings can be read from (4), (5) in appendix A, again by substituting the

vacuum mode functions by the medium mode functions

gS
vΠ2 =

1√
κ

∫
dZ

ΨS
1

K∆∫
dZ 1

K∆

,

gS
v3 =

1√
κ

∫
dZ K−1/3(Ω1)

2ΨS
1 ∆−1 ,

g̃S
v3 =

1√
κ

∫
dZ K−1/3(ΨS

1 )3∆−1 . (6.56)

6.4.3 Zero density limit

To check the current mode decomposition used in this section, we take the zero baryon

density limit. In this case, Lorentz symmetry is enforced and the action reads

S2 = tr

∫
d4x

{
− ∂µΠ∂νΠ +

1

2
fµνf

µν + m2
1vµvν

−2gvΠ2 vµ[Π, ∂µΠ] + gv3 fµν [vµ, vν ] + · · ·
}

, (6.57)

which is the same as eq. (5.40) in [3] except the vΠΠ coupling. The difference comes from

the gauge choice. In [3] Az = 0 gauge is used and we chose AM (z → ∞) → 0. Since the

difference is merely a gauge choice, physics will not be changed. However we will repeat

the analysis of couplings at zero density with (6.57), since the action in our gauge is more

convenient for reading off physical quantities. Also it is readily extendable to finite baryon

density.
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First we examine the KSRF relation by defining aKSRF as

aKSRF ≡ 4 g2
vΠ2 f2

π

m2
1

∼
{

2.03 Experiment

1.3 Sakai Sugimoto model
, (6.58)

which is the same value reported in [3, 4], as expected. The universality of the vector

meson coupling can be checked by aU defined as

aU ≡ gvΠ2

gv3

∼
{

1 The universality of the vector meson coupling

0.93 Sakai Sugimoto model
, (6.59)

which is also the same value as in [3]. Notice that both relations include gvΠ2 and can be

read from (6.57). In the Az = 0 gauge we should convert gvΠ2 to avΠ2 by [3]

avΠ2 =
2gvΠ2

m2
1

. (6.60)

When we consider the field redefinition in (6.57)

vµ → vµ +
av3

2
[Π, ∂µΠ] , (6.61)

the algebraic relation (6.60) appears immediate. However when we look at the integral

expression of gvΠ2 and avΠ2 the equivalence is obscured.

avΠ2 =
2gvΠ2

m2
1

⇔ π2

8

∫
dZK−1/3Ψ1(1 − 4ψ̂2

0)

∫
dZK(∂ZΨ1)

2 =

∫
dZK−1Ψ1 . (6.62)

Next and following [3], we compare (6.57) with the action from the hidden local sym-

metry approach

SH ≡ tr

∫
d4x

{
− ∂µΠ∂νΠ +

1

2
fµνf

µν + ag2f2
πvµvν

−ag vµ[Π, ∂µΠ] + g fµν [v
µ, vν ] + · · ·

}
. (6.63)

The hidden local symmetry parameter (l.h.s. ) can be written in terms of the D-brane

effective action parameter (r.h.s. ):

g = gv3 , (6.64)

a =
2gvΠ2

g
=

2gvΠ2

gv3

, (6.65)

f2
π =

m2
1

ag2
=

m2
1

2gv3gvΠ2

, (6.66)

where we used the first two relations to get the last. We may define the parameter aH

which quantify the difference between hidden local symmetry approach and our model: 6

aH ≡ 2gv3gvΠ2f2
π

m2
1

∼
{

1 Hidden local symmetry

0.72 Sakai Sugimoto model
, (6.67)

6For a=2 the hidden local symmetry approach implies KSRF relation and the universality of the vector

meson coupling. Here, we do not require this value since we want to compare our model with the hidden

local symmetry itself.
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which is the same value reported in [3], as expected. aH may be interpreted as follows.

Since fπ is an input parameter the Hidden local symmetry has two adjustable parameters,

so a is not uniquely determined. It can be fixed by (6.65) or (6.66). When these two

procedures yield the same value, aU = 1.

6.5 Numerical results

All the numerical work reported here has been carried out for the lowest modes vµ ≡ B
(1)
µ

and Π ≡ ϕ(0) with the parameters discussed in section 3.

6.5.1 Mass and screening mass

From the previous section the meson masses (6.37) (time-like) and the screening

masses (6.25) (space-like) are defined as

mn ≡
√

λT
nMKK ,

Mq

n ≡
√

λΩ
nMKK ,

M⊥
n ≡

√
λS

nMKK , (6.68)

where λT
n , λΩ

n , and λS
n are determined as the eigenvalues of the following equations

((6.28), (6.29), (6.19)), respectively:

−K1/3∆−1∂Z

(
K∆ ∂ZΨT

n

)
= λT

nΨT
n , (6.69)

−K1/3∆−1∂Z

(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.70)

−K1/3∆ ∂Z

(
K∆ ∂ZΨS

n

)
= λS

nΨS
n . (6.71)

Their dependense on the baryon density normalized to the nuclear matter density is shown

in (3) for the lowest eigenmode. The time-like and transverse screening mass are seen to

decrease midly with density. The longitudinal screening mass increases moderatly with

baryon density. The mild dependence on the density for the SS model indicates that the

vector mesons are weakly affected by the baryon density in this version of the SS model. As

the inserted baryons are point like, at large Nc their interaction is chiefly repulsive through

ω’s as induced by D8-D8. The ω interactions with vectors and axials is mostly anomalous

(through the WZ term) and therefore small as we ignored the WZ term.

6.5.2 Pion decay constant

The pion decay constant is identified from ((6.46), (6.51)) respectively,

fT
π

2
=

4κM2
KK∫

dZK−1∆−3
,

fS
π

2
=

4κM2
KK∫

dZK−1∆−1
. (6.72)

The explicit dependence on the baryon density is shown in figure (4). Both the time-like and

space-like pion decay constant are found to increase with the baryon density. The increase
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Figure 4: Pion decay constant

is quadratic at small densities. Since the S-wave pion scattering length with baryons is

1/Nc this explains the absence of a linear term. Moreover, for point-like external baryon

sources the pion-Axial-Vector coupling in matter at the origin of the pion decay constant

involves two baryon sources and is repulsive.

6.5.3 Vector couplings and KSRF relation

The vector couplings are identified in (6.54) and (6.56). Their overall dependence on the

baryon density is again mild as explained above.

vΠΠ couplings:

gT
vΠ2 =

1√
κ

∫
dZ Ω1

K∆3∫
dZ 1

K∆3

,

gS
vΠ2 =

1√
κ

∫
dZ

ΨS
1

K∆∫
dZ 1

K∆

,

(6.73)
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Figure 5: (a) vΠΠ coupling (b) vvv coupling.

vvv couplings:

gT
v3 =

1√
κ

∫
dZ K−1/3Ω1(Ψ

T
1 )2∆

gS
v3 =

1√
κ

∫
dZ K−1/3(Ω1)

2ΨS
1 ∆−1 ,

g̃S
v3 =

1√
κ

∫
dZ K−1/3(ΨS

1 )3∆−1 . (6.74)

6.5.4 KSRF relations

In the matter rest frame Lorentz symmetry is no longer manifest. As a result, we expect

a variety of KSFR relations depending on wether time-like or space-like parameters are

used. Indeed, for instance the a-parameter at the origin of the KSFR relations can now

take 4 different forms depending on the time-like/space-like arrangement. Specifically

aT1
KSRF ≡ 4 (gT

vΠ2)
2 (fT

π )2

m2
1

, aT2
KSRF ≡ 4 (gT

vΠ2)
2 (fT

π )2

(Mq

1)
2

aS1
KSRF ≡ 4 (gS

vΠ2)
2 (fS

π )2

(M⊥
1 )2

, aS2
KSRF ≡ 4 (gS

vΠ2)
2 (fS

π )2

(Mq

1)
2

(6.75)

7. Conclusions

We have considered a generalization of the chiral model proposed by Sakai and Sugimoto to

finite baryon density. The baryon vertices in bulk are attached equally to the D8-D8 branes

and correspond to S4 in D8. They are treated as stable and point like in R
3 and act as

uniform sources of baryon density. Their point-like nature at large Nc and coupling λ imply

that their interactions as induced by D8-D8 is mostly repulsive through the exchanges of

omega mesons.
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The bulk energy density grows quadratically with the baryon density before softening

at asymptotic densities. The quadratic and repulsive growth is expected from the exchange

of omega mesons. The softening reflects on the fact that at asymptotic densities the

repulsive baryons form an instable but regular array for fixed volume V . If V acting as

a container is removed, the baryons fly away in this version of the SS model. We note

that the energy density scales as Nc since Nc/
√

a is of order 1 as expected from standard

large Nc arguments. The DBI action resums (partially) the strong NN-interactions while

keeping the leading Nc result unchanged. Since the instanton size is of order 1/
√

λ we

also note that the resummed contributions are of order λ0 since the bulk instanton density√
λnB is of order λ2 (The additional

√
λ here stems from the rescaling of z → z/

√
λ in the

delta-function source at z = 0).

Using linear response theory, we have probed this dense baryonic system using pions,

vectors and axials. The point like nature of the baryons with a size of order 1/
√

λ and the

large Nc nature as noted above, causes rather mild changes in the masses and couplings

as a function of baryon density. In contrast, the pion decay constants are found to change

appreciably. The quadratic increases at small baryon densities is mediated by omega’s.

The scalar S-wave pion-baryon scattering length is noted to vanish at large Nc, causing fπ

to increase instead of decreasing at finite density. This behaviour is unphysical.

The current approach needs to be improved in a number of ways to accomodate the

baryon physics expected in the real world. First, the point-like nature of the sources need

to be relaxed. This is possible by constructing the pertinent instanton vertex. Also, the

point-like limit suggests that the DBI results quoted here are only indicative since higher

derivative corrections to the DBI effective action are expected to contribute (see also [3 – 5]

for further comments on this point)). Second, the Fermi motion of the sources need to

be included. This can be achieved through a select quantization of the collective variables

associated to the baryon vertex insertion. Some of these issues will be addressed in later

work.

Note added. After the completion of this work, we became aware of the recent work

by O. Bergman, G. Lifschytz, and M. Lippert [15] who also address the SS model at finite
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baryon density. They have shown that a cusp configuration develops at finite density for

generically separated D8-D8. This observation does not apply to the original SS embedding

we discuss here. We also noticed the appearance of two relevant papers: [16] discusses the

finite density problem in the holographic NJL model, and [17] discusses the effects of a

finite size baryon charge distribution.
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A. The effective action using the vacuum modes

Let us only consider the lightest vacuum meson modes corresponding to the pion and ρ

meson fields. This vacuum mode decomposition was studied in [3] at zero baryon density.

Here we just add A0 as obtained in section 3 to the gauge field AM . Since the mode

decomposition is complete, this approach should be complementary to the one discussed in

the text. It is the same as the one we used in [8]. As we will show, the results are overall

similar to the ones discussed in the main text regarding the density dependence.

In the gauge Az = 0 and ξ ≡ e
iΠ(xµ)

fπ (5.24), Aµ reads7

Aµ(xµ, z) = −iA0(z) + vµ(xµ)ψ1(z) .

+

(
2i

fπ
∂µΠ + [∂µΠ3]

)
ψ̂0(z) +

1

2f2
π

[Π, ∂µΠ] + O(Π4) , (A.1)

where A0 is the background field, vµ ≡ B
(1)
µ . We have set B

(n)
µ = 0 for n ≥ 2. The

corresponding field strengths are

Fµν = (∂µvν − ∂νvµ)ψ1 + [vµ, vν ]ψ2
i

+
2i

fπ
([∂µΠ, vν ] + [vν , ∂νΠ])ψ1ψ̂0 +

1

f2
π

[∂µΠ, ∂νΠ](1 − 4ψ̂2
0) + O((Π, vµ)3) (A.2)

Fzµ = −iȦ0 +

(
2i

fπ
∂µΠ + [[∂µΠ3]]

)
φ̂0 + vµψ̇1 + O(Π4) (A.3)

where Ȧ0 = dA0
dz , ψ̇1 = dψ1

dz , and

φ̂0 = ∂zψ̂0 =
1

πUKK

1

K
∼ φ0 in (5.7) (A.4)

7In this section the gauge field Aµ is treated as anti-Hermitian. A0 and Π is Hermitian so i was

introduced, while vµ is anti-Hermitian. Note that we are working in a different gauge from section 6.
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FµνFµν → fµνf
µνψ2

1 ≡ α2

2fµν [vµ, vν ]ψ3
1 + 2

f2
π
fµν [∂

µΠ, ∂νΠ]ψ1(1 − 4ψ̂2
0) ≡ α3

FµzF
µz → (Ȧ0)

2 ≡ β0

− 4
fπ

(∂0Π)φ̂0Ȧ0 + 2iv0ψ̇1Ȧ0 ≡ β1

− 4
f2

π
(∂µΠ∂µΠ)φ̂2

0 + vµvµψ̇2
1 + 2i

fπ
{∂µΠ, vµ}φ̂0ψ̇1 ≡ β2

[F 4] → fijf
ij(Ȧ0)

2ψ2
1 ≡ γ2

[
2fij [v

i, vj ](Ȧ0)
2ψ3

1 + 2
f2

π
fij[∂

iΠ, ∂jΠ](Ȧ0)
2ψ1(1 − 4ψ̂2

0)

−2iv0fijf
ijȦ0ψ̇1ψ

2
1

]
≡ γ3

Table 3: The relevant terms in evaluating DBI action up to third order in the fields (Π, v). All

entries are understood in the integral and trace operation.

Notice that A0 does not contribute to Fµν and affect only Fzµ.

In order to compute the DBI action (5.9),

SDBI
D8-D8

= −T̃

∫
d4xdz U2

tr

√
1 − (2πα′)2

R3

2U3
FµνFµν − (2πα′)2

9

4

U

UKK
FµzFµz + [F 3] + [F 4] + [F 5] ,

we need to know FµνFµν , FµzF
µz , [F 3], [F 4], and [F 5], which have many complicated con-

tributions. Again, we use the observations noted in the text to simplify. Thus

[F 4] = (2πα′)4
9

8

U

UKK

(
R

U

)3

F0zF
0zFijF

ij + O((vµ, ϕ)4) . (A.5)

Table (3) lists all relevant terms. We have introduced fµν defined as

fµν ≡ ∂µvν − ∂νvµ , (A.6)

with µν = 0, 1, 2, 3 and i, j = 1, 2, 3. Table (3) should be understood in the integral and

trace operation. We have omitted some terms vanishing in the operation and rearranged

some terms by using the cyclicity of the trace.

In terms of the entries in the r.h.s. of the table, the action reads

SDBI
D8-D8

= −T̃

∫
d4xdz U2 tr

√
P0 + P1 , (A.7)

with

P0 ≡ 1 − (2πα′)2
9

4

U

UKK
β0 = 1 − bK

1
3 (∂ZA0)

2 , (A.8)

P1 ≡ (2πα′)2
R3

2U3
(α2 + α3) + (2πα′)2

9

4

U

UKK
(β1 + β2) + (2πα′)4

9

8

R3

UKKU2
(γ2 + γ3) . (A.9)
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Again, P0 does not include meson fields and has carries the baryon density. Expanding the

action by fluctuating the fields we have

SDBI
D8-D8

= −T̃

∫
d4xdz U2 tr

[
√

P0 +
1

2

P1√
P0

− 1

8

P 2
1√

P0
3 +

1

16

P 3
1√

P0
5

]
+ O((Π, vµ)4)

= S1 + S2 + O((Π, vµ)4) , (A.10)

with

S1 ≡ −T̃

∫
d4xdz U2tr ∆−1 , (A.11)

S2 ≡ −T̃

∫
d4xdz U2tr

[
1

2
∆P1 −

1

8
∆3P 2

1 +
1

16
∆5P 3

1

]
, (A.12)

where we defined a modification factor ∆(Q) as

∆(Q) ≡ 1√
P0

=
1√

1 − bK
1
3 (∂ZA0)2

=

√
1 +

n2
B

4a2b
K−5/3 .

Notice that −S1 is the grand potential discussed in section 3, and S2 will be reduced to the

action of mesons. To accomplish it we plug (A.9) into (A.12) and evaluate all z integrals

and identify them as coefficients of each term in the remaining 4-D action.

Let us first check which terms we have and how they are affected by finite baryon

density schematically. It can be read off from table (3). At zero density we set A0 = 0

and ∆ = 1. Then α2, α3, β2 survive. α2, β2 correspond to the free action of Π and ρ, and

α3 is the couplings of vvv, vΠΠ interaction. At finite density all terms are enhanced by

∆,∆2,or ∆3. Furthermore there are nontrivial modification. The free action part will be

affected by γ2 and β2
1 . (β1 itself does not contribute because the first term has odd parity

in z and the second term is traceless.) The couplings are modified by γ3. There are new

interaction terms such as v0(∂µvν − ∂νvµ)2, v0vµvµ, v0∂µΠ∂µΠ, ∂0Π{∂µΠ, vµ}, which all

vanish at zero density.

Considering all these modification we get the final form of the meson action

S2 =

∫
d4x

[
− aT

Π2tr
(
∂0Π∂0Π

)
− aS

Π2tr
(
∂iΠ∂iΠ

)

+aT
v2tr f0if

0i +
1

2
aS

v2tr fijf
ij + m2

v
T
tr v0v

0 + m2
v
S
tr viv

i

+aT
v3tr

(
2f0i[v

0, vi]
)

+ aS
v3tr

(
fij[v

i, vj ]
)

+aT
vΠ2tr

(
2f0i[∂

0Π, ∂iΠ]
)

+ aS
vΠ2tr

(
fij[∂

iΠ, ∂jΠ]
)

+ · · ·
]

, (A.13)

where the coefficients of every term are defined in table (4). At zero density all coefficients

agree with those in [3]. There are three types of modification due to the baryon density:

∆,∆−1, and ∆3. ∆ simply comes from 1
2∆P1 in (A.12). Since ∆ is common to all coeffi-

cients, ∆3 and ∆−1 can be understood as ∆ · ∆2 and ∆ · ∆−2. An enhancing factor ∆2 is
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2
0
0
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)
0
0
2

Coefficients Definition Q = 0(∆ = 1)

aT
Π2

1
π

∫
dZK−1 ∆3 1

aS
Π2

1
π

∫
dZK−1 ∆ 1

aT
v2

∫
dZ K− 1

3 Ψ2
1 ∆ 1

aS
v2

∫
dZ K− 1

3 Ψ2
1 ∆−1 1

m2
v
T

M2
KK

∫
dZ K(∂ZΨ1)

2 ∆3 m2
ρ

m2
v
S

M2
KK

∫
dZ K(∂ZΨ1)

2 ∆ m2
ρ

aT
v3

1√
κ

∫
dZ K− 1

3 Ψ3
1 ∆ 1√

κ
· 0.446

aS
v3

1√
κ

∫
dZ K− 1

3 Ψ3
1 ∆−1 1√

κ
· 0.446

aT
vΠ2

1√
κ

π
4M2

KK

∫
dZ K−1/3Ψ1(1 − 4ψ̂2

0)∆ 1√
κ

π
4M2

KK
· 1.584

aS
vΠ2

1√
κ

π
4M2

KK

∫
dZ K−1/3Ψ1(1 − 4ψ̂2

0)∆−1 1√
κ

π
4M2

KK
· 1.584

Table 4: The definitions of the coefficients in the action (A.13). At finite density, there are

enhancing factors ∆, ∆3 and a suppressing factor ∆−1.

Coefficients Definition Q = 0(∆ = 1)

gT
vΠ2

√
κM2

KKU2
KK

∫
dZ K∆3Ψ1φ

2
0

1√
κπ

· 0.63

gS
vΠ2

√
κM2

KKU2
KK

∫
dZ K∆Ψ1φ

2
0

1√
κπ

· 0.63

Table 5: The definitions of the coefficients in the action (A.13). At finite density, there are

enhancing factors ∆, ∆3 and a suppressing factor ∆−1.

due to additional contribution from β2
1 and a suppressing factor ∆−1 is from γ2, γ3, which

explains the calculational similarities in all the results.

Finally we want to mention without details, the character of the action in the gauge

AM (z → ∞) → 0 instead of Az = 0. The action is the same as in (A.13) except for the

interaction term vΠΠ

−2gT
vΠ2 v0[Π, ∂0Π] − 2gS

vΠ2 vi[Π, ∂iΠ] , (A.14)

where gT
vΠ2 and gS

vΠ2 are defined in table(5).

A.1 Numerical results

In this section we compute the coefficients in table (4), (5) numerically. Their physical
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Figure 7: (a) Pion decay constant vs nB

n0

[
fT

π

fπ
=

√
aT

π2 ,
fS

π

fπ
=

√
aS

π2

]
, (b) Velocity of Π and ρ (v)

vs nB

n0

[
vπ ≡

√
aS

π2

aT

π2

and vv ≡
√

aS

v2

aT

v2

]

meanings can be read off from the action (A.13). We use the same numerical inputs as

detailed in section 3.

A.1.1 Pion decay constant

The pion decay constant can be defined by the procedure of section 6.3 with the vacuum

mode function.

fT
π ≡ fπ

√
aT

π2 , fS
π ≡ fπ

√
aS

π2 (A.15)

A.1.2 Velocity

The pion velocity:

vπ ≡
√

aS
π2

aT
π2

=
fS

π

fT
π

(A.16)

The lowest mode velocity:

vv ≡
√

aS
v2

aT
v2

(A.17)

A.1.3 Mass

M1 ≡
√

m2S
v

aT
v2

(A.18)

A.1.4 Screening mass

M q

scr ≡
√

m2T
v

aT
v2

, M⊥
scr ≡

√
m2S

v

aS
v2

. (A.19)
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Figure 8: (a) v mass vs nB

n0

[
M1

mρ
≡

√
m2S

v

aT

v2
m2

ρ

]
, (b) Screening masses vs nB

n0

[
Mq

scr

mρ
≡

√
m2T

v

aT

v2
m2

ρ

,

M⊥

scr

mρ
≡

√
m2S

v
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v2
m2

ρ

]
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